UNCLASSIFIED

]

AD-A262 965 |
wiiiinty i

AFIT/EN-TR-93-2

Air Force Institute of Technology

AdasX Window System Bindings: ! ’ T l C

Conversion Strategies , TV ECTE

oD Q
Karl S. Mathias Mark A. Roth &% ‘= 131833
Capt, USAF Maj, USAF A .
18 March 1993 o

Approved for public release; distribution unlimited

93-08079
v WERRR

-

Ada/X Window System Bindings: Conversion Strategies

Karl S. Mathias
Mark A. Roth!

Abstract

The X Window System has come to be accepted
as the standard for developing graphical user
interfaces on mid to high range workstations,
Ada interfaces to X through the use of bindings
were developed in the late 1980’s under the Soft-
ware Technology for Adaptable Reliable Systems
(STARS) contracts. The bindings have not been
maintained, and as they become more obsolete,
many are converting their applications to newer
sets of commercially available bindings. This pa-
per discusses how the bindings work and two
strategies for converting out of the STARS bind-
ings.

1 Introduction

The X Window System was developed by the
Massachusetts Institute of Technology (MIT) in
partnership with Digital Equipment Corporation
(DEC). Released in 1986, it supplies a flexible,
object-oriented, graphic toolkit that can be used to
develop user interfaces. Now in the fifth release
of its second major version (X11R5), X has become
the de-facto standard interface with workstation
manufacturers [5].

Ada bindings to X were developed in the late
1980’s under the Software Tech:iology for Adapt-
able Reliable Systems (STARS) contracts. The
bindings do not cover the full X specification, have

“he guthors are with the Department of Electrical and
wowmputer Engineering (AFIT/ENG), Air Force Institute of
Technology, 2950 P ST, Wright-Patterson AFB, OH 45433-
7765.

various execution problems, and are no! main-
tained {3]. As new versiones of the X Window Svs.
tern are released, the STARS bindings become in-
creasingly obsolete.

This paper discusses strategies for converting
from these old bindings to the newer bindings that
are being commercially supported. An overview
of the X Window System is given along with g dis-
cussion of how Ada binds to X. Examples are pre-
sented that demonstrate how the strategies for
conversion have been used to convert Saber {an
air/land battle wargame) from STARS to bindings
developed by Software Engineering Research Cor-
poration (SERC).

2 The X Window System: A Brief
Overview

The X Window System uses a client-server ar-
chitecture that is designed to take advantage of
networked systems. A server process runs on
each display machine in a network (see Figure
1); it functions as the interface to that device's
hardware. Client applications communicate with
the server to have it display images and react
when the user takes specific actions. Clients and
servers may run on the same or different ma-
chines.

An X client application may utilize several lay-
ers of software, as shown in Figure 2. Each layer
is an independent set of library calls, with each
higher level having complete access to any of the
lower layers,

Node One Node Two

Client App. Server

1

< Network >

Client App.

Node Three

Figurel: Client-Server Architecture of the X Win-
dow System

Application

Widget Set

X Toolkit Intrinsics

X Library

< = >

Figure 2: Architecture of X Window System Ap-
plications

2.1 X Library

"The lowest-level functionality of the X Window
System is the X Library (Xlib), Ths hbrary
provides the very bas.; functions needed w ren-
der images on a display. Examples would be
drawing lines, defining displey colors, handhing
keystrokes, etc.

2.2 X Toolkit Intrinsics

Programming in Xlib can be a very labor inten-
sive task due to the amount of event handling that
takes piace. Varous toolkits have been devejoped
that alleviate the burden of programming in Xhb.
the most popular being the X Toolkit Intninsice
(Xt). Applications using Xt are gpiven general {a-
cilities that aliow streamlined event handhing and
the ability to create reusable display objects (hike
windows or buttons) called widgets.

2.3 Widget Sets

The charter of X is “mechanism without pohicy”
{6, 8]. Thus, unlike some windowing systems, X
does not force developers to have a mandated style
to their application. Commercial widget sets such
as the Open Software Foundation's (OSF) Motif
widget set fill in this gap. Layered on top of Xt,
this library is used according to a style guide, and
provides a consistent look and fee! across applica-
tions written with it [2].

3 AdaBindingsto X

The X Window System is written in C without
consideration for language independence. This is
a problem for programmers using Ada to develop
projects. Language bindings to C libraries offer a
simple solution for programs needing X function-
ality.

3.1 Bindingto C

In general, a binding to C will consist of four
parts: declarations, preprocessing, C call(s), and
post-processing. Figure 3 illustrates a typical
binding. This binding takes one parameter as

Page 2

<

g
-

1 : function Ada Call{Param One: in Special} returrn Special .
2 ¢ function C_Call(X: 1n INTEGER} return INTEGEX;

3 : pragma INTERFACE(C, & Call); !

q : pragma INTERFACE NAME(C Cali, " C Call"j;

3

6 : New Param One : INTEGER;

7+ Return_Value : INTEGER;

8 :

9 : begin

10: New Param := Special To INTEGER (Param_Cnej;

11: Return Value := C_Call(New Param);

12: return{INTEGER To_Special(Return Vaiuve);; “ P P
13: end Ada Call;

Figure 3: An Example Ada-to-C Binding

input, converts it to an integer, and passes that
integer to the corresponding C procedure.

Lines 1—4 declare the Ada binding function and
the corresponding C function. The INTERFACE
statements let the compiler and linker know that
a C calling protocol will be needed, and the name
of the function in the C libraries. Line 10 illus-
trates a simple preprocessing segment of code.
The parameter Param.One must be converted to
an integer value before the C call can accept it.
An externally defined function accomplishes this.
Line 11 calls the actual C function and passes it
the converted value of Param_One. Line 12 post-
processes the returned integer into the desired
type. This is then returned to the calling routine.

3.2 Binding Thickness

Figure 3 is a simple mapping of a C function to
an Ada call. A more complex C call, however,
could require much more massaging in the pre-
and post-processing areas to send and return val-
ues properly. The level to which a binding pro-
cesses information before passing it on has come
to ve deacribed in terms of thickness.

A thin binding set is characterized by a one-to-
one mapping of Ada and C functions. Ada specific
faatures are only used when a C-specific construct
ay not be available. Within the bindings, min-
imal amounts of processing are apphbed before or
after the call to C.

Thick bindings are characterized by heavy usc
of Ada constructs and language features, gen-
eralization of the mapping to C calls (one-to-
many mappings), and the addition of utility proce-
dures/functions. A thick binding seeks to insulate
the Ada programmer from the C calls while giving
them the freedom to utilize Ada features to their
best advantage.

These become important considerations when
moving between binding sets. Moving from a
thick to a thin binding will involve the creation
of calls that were not previously required. Mov-
ing from a thin to thick binding may call for a
redesign of some code sections to make optimum
use of Ada's features.

3.3 STARS Binding Set

Three major sets of X interfaces are distributed
by the STARS Foundation: Science Applications
International Corp (SAIC) Xlib bindings, Boeing's
Xt Intrinsice/OSF Motif bindings, and the Unisys
Ada/Xt software. The Unisys software is an Ada
implementation—the Xlib and Xt Intrinsics li-
braries have been re-coded in Ada.

The SAIC bindings cover most of the Xlib func-
tions, while the Doeing bindings cover some Xlib,
a large part of Xt, and most of the OSF Motif
functions. While carrying the characteristics of
thin. Lindings, they have some utility functions
and Ada-specific constructs. As they were one of

Page 3

the first sets of bindings available, many applica-
tions used them as an interface to X.

There are problems with usihg these bindings.
There is little documentation available, so the
programmer usually must read the source code
to determine usage. The bindings have bugs, and
users of the bindings must correct them {1]. The
binding set is not complete and some bindings
must be created. The SAIC and Boeing bindings
are not entirely compatible, and use of one can
mean loss of some functionality in the other {3}
Finally, there is no on-going support for the bind-
ings and they are rapidly becoming obsolete.

3.4 Commercial Binding Sets

The lack of support for STARS has resulted in
the emergence of commercially supported bind-
ings. Bindings such as Ada/Motif by SERC are
based upon the STARS bindings, but have been
debugged, expanded and enhanced to make them
a viable product [7].

The availability of these bindings makes it pos-
sible for applications to be upgraded to the latest
releases of the X Window System and OSF Motif.

4 Convérting Bindings

With many of the commercial bindings avail-
able based on the STARS bindings, converting a
STARS application to a newer set would seem a
simple task. Small applications do convert easily.
Large applications, however, require a careful ap-
proach or excessive work will be done for a product
that is less than optimal. This section discusses
two strategies for conversion: low-level and high-
level mapping.

4.1 Low-Level Mapping Strategy

Using the low-level style of conversion, the pro-
grammer determines either all at once, or incre-
mentallv all the STARS functions, procedures,
a:d types in an application. Each of these is then
iteratively converted to a corresponding func-
tion/procedure/type in the target binding set.

4.11 Method

' Previous work by Moore {4) describes & straight-
forward method for converting each STARS iden.
tifier:

1. Find Base STARS Declaration. ldenufy the
STARS source code statements that declared
the identifier. This process may need to be
nested, as the goal 1s 1o locate 8 standard
Ada type definition.

2. Find Similar Identifier Search the target
binding specification for an identifier with
the same or similar name as the STARS iden-
tifier.

3. Find Base Target Binding Declaration. 1den-
tify in the target binding how this identifier
is declared. This process may also need to be
repeated to locate the base Ada type declara-
tion.

4. Convert Between Base Declarations. Using
the declarations from above, the base type
of the STARS identifier is converted tc an
appropriate type used by the target binding
identifier.

4.1.2 Example Conversion

Saber, an air/land battle wargame, was originally
coded using the STARS bindings. Figure 4 shows
a piece of the code used to set the colors of ter-
rain features. In this example, the code will be
converted to the Ada/Motif binding set using low-
level mapping.

1. Find Base STARS Declarations. The
only STARS identifier used in Figure 4 is
XT.Pixel (a type identifier). Looking in the
STARS declarations XT.Pixel is defined as
a subtype of AFS.LARGE NATURAL. Looking in
the boeing_afe package, AFS.LARGE.NATURAL
is a subtype of AFS_LARGE_INTEGER. Finally,
it is found that AFS_LALGE.INTE=~A is defined
as an Ada INTEGER. This is the base Ada
type that is needed.

Page 4

procedure Initialize Terrein Colors{ Politicai Red P XT.Pixel;

Political Blue T XT.Pixel;
Political Neytral : XT.Pixel;
City XT.Pixel 7 1is
begin

Political Red Color 1= Political Red;

Political Bliue Color := Politaical Blue;

Political Neutral Color := Political_Neutralj

City Coloer 1= City;

end Initialize Terrain Colors;

Figure 4: Section of Saber’s STARS code

procedure Initialize Terrain_Colors(Political Red : X_Lib.Pixel;
) Political Blue : X_Lib.Pixel;
Political Neutral : X Lib.Pixel;

City : X Lib.Pixel) 1s

begin
Political Red Color := Political Red;
Political Blue_Color := Political Blue;

Political Neutral Color := Political Neutral;

City Color = City;
end Initialize Terrain_Colors;

Figure 5: Low-level conversion of code

Page 5

2. Find Similar Identifier. There is no Pixel
in Ada/Motif’s Xt Intrinsics library package,
however there is one in theX library package.

3. Find Base Target Binding Declaration. Fol-
lowing a procedure similar to that above, x.
Lib.Pixe. will be have a base type of an in-
teger range (-2 ** 31 .. (2 ** 31) - 1)

4. Convert Between Base Declarations. Since
both Pixe.s are based upon integer values,
the conversion is simply to substitute the
new identifier for the old. Figure 5 shows
the final product. Note that the package
variables Political_Red Color, Political.
Blue._Color, ete. will also require this con-
version in their declarations if the assign-
ment is to compile properly.

The converted code is shown in Figure 5.

4.1.3 Advantages

This type of approach works well with smaul ap-
plications having limited X functionality. It offers
the following advantages:

o Little knowledge of X required. Since the
method is somewhat algorithmic, a program-
mer with only a basic knowledge of X can do
the simple comparisons needed.

o No redesign required. In essence, this is a
line-by-line translation and avoids the need
for extensive redesign of the application to fit
& new binding.

e Fast turn-around times. Because it is a
translation process, and because no design is
required, the conversion can proceed rapidly.

4.1.4 Disadvantages

While tempting to use, this method fails on larger
applications. As Moore [4] discovered, line-by-
in~ translation quickly becomes unmanageable
s« ore functions are introduced that interact
with each other. In general, the disadvantages
are categorized as follows:

o Not robust. A line-by-line translation is only
effective if the number of translations are
small, and they match up well wath the tar-
get bindings. For example, this method {ails
when & STARS target function such as ¥+
Sez W:iouet 18 encountered since there 16 no
corresponding Xt identifier.

e No optimization. Since the STARS bindings
were developed, X has added new functions
that can rignificantly reduce the amount of
code required. Since low-level mapping does
not allow for redesign, these new features
will not be used.

e Prone to error. Larger applications may have
X values that are global in scope (such as de-
fault drawables); indiscriminate conversions
of these values may introduce side-effects. A
STARS binding may have a base type that
maps to a similar, but incorrect target bind-
ing identifier. For example, XT.Arc.Z15% in
STARS appears to map to Xt . X% Ancillar,.
Types.Arg.List.Ptr in SERC (both are ac-
cess types). If this mapping is used, the
corresponding SERC functions using an ar-
gument list will not compile~—they require
Xt.XtAncillary.Types.Xt Arg.List.

4.2 High-Level Mapping Strategy

In larger applications, a more effective method of
conversion will be high-level mapping. Using this
approach the programmer takes the STARS ap-
plication and breaks it down into sections of code
that execute specific X tasks. These sections of
code are then converted to the new set of bind-
ings.

4.2.1 Method

1. Identify Sections of X Functionality. Starting
from the X application startup procedures,
identify areas where specific tasks are being
accomplished. For instance, an application
may have a task that creates a form. This
may have subtasks that create pushbutton
and label widgets.

Page 6

2. Develop an Equivalent Set of X Calls. For
each section identified, develop an equiva-
lent set of X calls. Care shbuld be taken that
the set of calls be extracted from a version of
X that the new bindings are compatible with.
The important idea here is to create the same
functionality for the application using the
best available X functions, procedures, and
types. This may require redesigning some
areas of the code.

3. Map Equivalent Set to Target Bindings. The
next task is to map the X calis to Ada bind-
ings. Commercially supported bindings such
as Ada/Motif generally have supporting doc-
umentation that assists with this task.

4. Convert Global Variables. Care must taken
that X global values which are used by dif-
ferent sections of code get converted. This
will tend to happen naturally: as sections of
code are converted, the giobal variables will
become apparent.

These steps should be used as guidelines, and
not be interpreted as strict procedure. Conversion
from thin to thick bindings, for instance, may al-
low a relaxation on the equivalent set of X calls
since there may not be a direct mapping.

4.2.2 Example Conversion

In this example, another section of Saber will be
converted. This piece of code, shown in Figure 6,
creates a label on the system’s startup form.

1. Identify Sections of X Functionality. The code
in Figure 6 is a good example of an X task. It
creates a label with a string in it. There is no
need for additional breakdown of the code.

2. Develop Equivalent Set of X Calls. An equiv-
alent set of X calls to perform this function
are:

XmStringCreateltoR {text, charset)
¥rSetArg(arg, resource name, value)
‘reateManagedWidget (name,
widget class,
parent,

args,
num_args;)
XmStringFree(string:

Note that X provides
a function (XtVaCreateManagedkidget) that
eliminates the need for an argument list,
Ada, however, cannot use this function since
it has a variable argument parameter list.
The Ada/Motif binding maps this function to
XtCreateManagedwWidget instead.

3. Map Equivalent Set to Target Bindings. Each
function is mapped to an equivalent set of
Ada/Motif bindings. Note that because Ada
can constrain an array, the num_args param-
eter on Xt{reateManagediwidget is not used.

4. Convert Global Variables. As the mapping
takes place, the variables Args and Form.
Widget will have to be converted. Rather
than try a low-level mapping conversion,
it is better to determine what Xt.Create.
Managed.Widget expects them te be. Change
them to the appropriate type, in this case Xt
Arg.List and Widget respectively.

The results of the conversion are shown in Fig-
ure 7.

4.2.3 Advantages

This method works well on applications of any
size, and has several advantages over low-level
mapping:

¢ Robust. Since the strategy develops a set of
X calls and maps these to the new bindings,
it doesn’t fail when a non-mappable STARS
function or identifier is found. In Figure 6,
Xt._Set.Widget will not appear in the equiv-
alent set or the final code.

e Enhanced performance. Socme new func-
tions in the X Window System (such as
CreateManagedWidget) take the place of sev-
eral older calls. Using these in Ada elimi-
nates extra bindings and makes the code ex-
ecute more efficiently.

Page 7

-~ Create the TITLE

Label Text := XM.Xm String Create L To R{

"Welcome to the SABER Post-Processing System”,

XM.Xm_STRING DEFAULT_ CHARSET);
XT.Xt_Make Arg List{ SIZE => 3, ARGS => Args };
XT.Xt_Set Arg(Args, XM.XmN_Width, 4000 };
XT.Xt_Set Arg(Args, XM.XmN Unit_Type, XM.Xm_1000TH_INCHES };
XT.Xt_Set Arg(Args, XM.XmN Label String, Label Text);
Title_Label := XM.Xm Create_Label(Form Widget, "Title", Args };
XT.Xt_Set Widget(Child List, Title_Label });
XT.Xt Clear Arg List(Args);
XM.Xm_String Free{ Label Text);

Figure 6: Section of Saber’s STARS code

—-— Create the TITLE
Label Text := Xm String Create_L_To_R{(
"Welcome to the SABER Post-Processing System”,
Xm String Default Charset);
Xt_Set_Arg(Args(1l), Xm_N _Width, 4000);
Xt_Set_Arg(Args{2), Xm N unit_Type, Xml000th_Inches);
Xt_Set Arg(Args(3), Xm N Label String, Label Text);
Title_Label := Xt Create_Managed Widget ("Title",
Xm Label Widget Class,
Form_Widget,
Args(l .. 3));
¥m_String Free(Label Text);

Figure 7: High-level conversion

Page 8

o Avoids type incompatibilities. One of the
problems in low-level mapping that high-
level mapping avoids is’mismatching ar-
gument types. Where it was possible
to think Xt .Xt Ancillary. Types.Arg.List.
Ptr should be used where XT.Arg.lList
had appeared using low-level mapping, it
would be immediately obvious that Xt.X:.
Ancillary.Types.Xt Arg.List is used as a
parameter type for aill Ada/Motif set argu-
ment list functions.

4.2.4 Disadvantages

High-level mapping is inherently more complex
than low-level mapping. While it handles many
cases that low-level can't, there are tradeoffs:

® Requires expertise in X. The process for doing
this type of conversion is not strictly defined.
Programmers will need experience with X to
identify functional areas and the best set of
equivalent calls to use.

o Slower turn-around times. Using the newer
features may require design changes in many
areas of the application. Changing the de-
sign, creating equivalent calls, and mapping
them to bindings will require significantly
more time than line-by-line translation.

5 Conclusion

This paper discussed two strategies for converting
from the STARS binding set to newer commercial
bindings. Low-level mapping is appropriate for
small applications with limited X functionality,
but does not work well with large applications.
High-level mapping works well with all applica-
tions and produces cleaner code, but requires ex-
pertise with X programming.

The high-level mapping strategy was developed
after determining that Saber could not be effec-
tively converted using low-level mapping. This
~ethnd has proved to be effective, allowing us

snvert the initialization, main controller, and
game play utilities (about 2000 lines of Ada code)
in one week’s worth of work. It was found that

certain X tasks are repeated often, and conversion
, techniques can duplicated for each. For example,

- Figure 6, which creates 8 label, 18 representative

of about 50% of all the Saber code. Companson
to other examples [2, 5, 6, 7} verifies that this s
charactenstic of most X programs.

As it tends to produce a better product, our
recommendation is to use the high-level mapping
strategy for all but very simple syvstems

Acknowledgements

The research for this paper was supported by a
grant from the Air Force Wargaming Center, AU
CADRE/WG, Maxwell AFB, AL, 36112

References

{1} Freese, Tim. “Ada/X Interface: Binding ver-
sus Implementation.” Tri-Ada 1992, Confer-
ence Proceedings. 478. 1992,

{2] Heller, Dan. Motif Programming Manual.
O’Reilly & Associztes, inc., 1991.

[3] Klabunde, Gary Wayne. An Animated Graph-
tcal Postprocessor for the Saber Wargame. MS
thesis, Air Force Institute of Technology, 1991.

{4} Moore, Donald Ray. An Enhanced User Inter-
face for the Saber Wargame. MS thesis, Air
Force Institute of Technology, 1992.

[5] Nye, Adrian. Xlib Programming Manual.
O'Reilly & Associates, Inc., 1990.

[6] Nye, Adrian and Tim O'Reilly. X Toolkit In-
trinsics Programming Manual. O'Reilly & As-
sociates, Inc., 1990.

(7] Systems Engineering Research Corporation.
Ada/ Motif User’s Manual, 1992.

(8] Young, Douglas A. X Window Systems Pro-
gramming and Applications with Xt. Prentice
Hall, Inc., 1989,

Page 9

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

1O1 1evrewng NI WCHGNS. SERICNNG BXALNG SLA WOUI(es
Pubi regorting burden 107 ths CQ.iection ot 10lormanon 1\ SILMATAC (O Iverage | NOUl D/ 1EDON Y. hLiuding Lhe time

g:?!:l«mq gnanrqvumummq the dats needed, and COMPILTING and reviewing the (DHECTION OF INtormation Send (Ommenty regaraing t. 4 Cuiden g1r (P 1 any oxMr‘ a‘toeﬂ of !P_N
COHBCTON Of INtOrMALION, INCIIING SUGGEITIONS 107 (8L, o Ty DUrTEN 10 WaRINGLON MES0USNES SErv (e [irectorate 100 IRIDImaton ODerstons & ! l}tm?mn 123Y certerson
Oavis Mighway, Suite 1204 Arkngion, VA 22102-4302. snc . the Otice Of Management and Sudge?. Peperwors Reduction Proys [1{0704-0188) wasnington [((9983

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 1 3. REPORY TYPE AND DATES COVERED
M- 18 March 1993 Technical Report
4. TITLE AND SUBTITLE S. FURDING NUMBERS

Ada/X Window System Bindings: Conversion Strategies

6. AUTHOR(S)
Karl 8. Mathias. Capt. USAF

Mark A. Roth, Mai. USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES! B PIRFORMING QROGANIZATION

: ; y N S REPORT NUMBER
Air Force lustitute of Technology. WPAFD O 45433-7765 AFIT/EN.TR.03.2

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING . MONITORING
Air Force Wargaming Center AGENCY REPORT NUMBER
AU CADRE/WG
Maxwell AFB AL. 36112-5532

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEIMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRALT (Maximum 200 words}
The X Window System has come to be accepted as the standard for developing graphical user interfaces on
mid to high range workstations. Ada interfaces to X through the use of bindings were developed in the late
1980’s under the Software Technology for Adaptable Reliable Systems (STARS) contracts. The bindings have
not been maintained. and as they become more obsolete. many are converting their applications to newer sets of]
commercially available bindings. This paper discusses how the bindings work and two strategies for converting]
out of the STARS bindings.

T4 SUBJIECT TERMS 15. NUMBER OF PAGES

Ada, X Windows, Motif, Ada Bindings 11
16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE Of ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2.89)

Peonseped e ANS 13 SRR

